About Communications       Author's Guide       Reviewers       Editorial Members       Archive
Archive
Volume 8
2021
Volume 7
2020
Volume 6
2019
Volume 5
2018
Volume 4
2017
Volume 3
2016
Volume 2
2015
Volume 1
2014
AASCIT Communications | Volume 3, Issue 2 | Feb. 15, 2016 online | Page:64-70
Adiabatic Compressibility of the Variable Chaplygin Gas
Abstract
In this paper, we have deduced an analytic expression for the adiabatic compressibility for a Chaplygin gas which is a function of the pressure P and temperature T. We have considered the work of Panigrahi (2015) for variable Chaplygin gas, exotic matter used in some cosmological theories whose equation of state is of the form with and n is a constant. The expression obtained for was used for the determination of the value of the thermal capacity at constant pressure for variable Chaplygin gas. It is predicted in this research the behaviour of the adiabatic compressibility of Chaplygin gas in the limit of high and low pressure. We have found that the adiabatic compressibility is function of the pressure and when and if as in the ideal gas and is always positive with n<0.
Authors
[1]
Manuel Malaver, Department of Basic Sciences, Maritime University of the Caribbean, Vargas State, Venezuela.
Keywords
Adiabatic Compressibility, Chaplygin Gas, Cosmological Theories, Equation of State, Exotic Matter
Reference
[1]
Sushkov, S. (2005). Wormholes supported by a phantom energy. Phys. Rev, D71, 043520.
[2]
Lobo, F.S.N. (2005). Stability of phantom wormholes. Phys. Rev, D71, 124022.
[3]
Lobo, F.S.N. (2006). Stable dark energy stars. Class. Quant.Grav, 23, 1525-1541.
[4]
Fabris, J.C., Goncalves S.V.B. and de Souza, P.E. (2002). Gen. Relativ. Grav. 34, 53.
[5]
Lima, J.A.S., Cunha, J.V. and Alcaniz, J.S. (2008). A simplified approach for Chaplygin-type cosmologies.Astropart.Phys.30, 196-199.
[6]
Bento, M.C., Bertolami, O. and Sen, A.A. (2002). Phys.Rev. D66, 043507.
[7]
Panigrahi, D. and Chaterjee, S. (2011). JCAP 10 002.
[8]
Santos, F.C., Bedran, M.L. and Soares, V. (2006). Phys.Lett. B636, 86.
[9]
Guo, Z.K. and Zhang, Y.Z. (2007). Phys. Lett. B645, 326.
[10]
Myung, Y.S. (2011). Thermodynamics of Chaplygin gas.Astrophys.Space Sci.335,561-564.
[11]
Panigrahi, D. (2015). Thermodynamicalbehaviour of the variable Chaplygin gas.Int.J.Mod.Phys.D24, 1550030.
[12]
Leff, H.S.(2002). Teaching the photon gas in introductory physics. Am. J. Phys, 70, 792-797.
[13]
Wang, S., Wu, S-Q., Xie, F. and Dan, L. (2006). Chin. Phys. Lett. 23, 1096.
[14]
Sekiwa, Y. (2006). Phys. Rev. D73, 084009.
[15]
Larrañaga, E.A. (2007). http://arxiv.org/abs/0711.0012
[16]
Dolan, B.P. (2011). Compressibility of rotating black holes.Phys.Rev, D84,127503.
[17]
Lee, H. (2001). Carnot cycle for photon gas? Am.J.Phys, 69, 874-878.
[18]
Malaver, M. (2015). Carnot engine model in a Chaplygin gas.Research Journal ofModeling and Simulation, 2(2), 42-47.
[19]
Dickerson, R.(1969). MolecularThermodynamics, W.A.Benjamin, Inc, Menlo Park,California, ISBN: 0-8053-2363-5.
[20]
Nash, L.(1970). Elements of Classical and Statistical Thermodynamics, Addison-Wesley Publishing Company, Inc, MenloPark, California.
[21]
Zemansky, M.W. andDittman,R.H. (1985). Termodinámica, McGraw-Hill Interamericana, Sexta Edición,ISBN: 0-07-72808-9.
Arcticle History
Submitted: Jan. 7, 2016
Accepted: Jan. 21, 2016
Published: Feb. 15, 2016
The American Association for Science and Technology (AASCIT) is a not-for-profit association
of scientists from all over the world dedicated to advancing the knowledge of science and technology and its related disciplines, fostering the interchange of ideas and information among investigators.
©Copyright 2013 -- 2019 American Association for Science and Technology. All Rights Reserved.